Skip to content

Datadog Metrics

A Datadog query can be used to obtain measurements for analysis.

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: loq-error-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: error-rate
    interval: 5m
    successCondition: result <= 0.01
    failureLimit: 3
    provider:
      datadog:
        apiVersion: v2
        interval: 5m
        query: |
          sum:requests.error.rate{service:{{args.service-name}}}

The field apiVersion refers to the API version of Datadog (v1 or v2). Default value is v1 if this is omitted. See "Working with Datadog API v2" below for more information.

Datadog api and app tokens can be configured in a kubernetes secret in argo-rollouts namespace.

apiVersion: v1
kind: Secret
metadata:
  name: datadog
type: Opaque
stringData:
  address: https://api.datadoghq.com
  api-key: <datadog-api-key>
  app-key: <datadog-app-key>

apiVersion here is different from the apiVersion from the Datadog configuration above.

Important

Namespaced secret

Datadog integration supports referring to secrets inside the same namespace as argo-rollouts (by default) or referring to a secret in the same namespace as the AnalysisTemplate.

To use a secret from the AnalysisTemplate namespace, include a secretRef section in the template, specifying the name of the secret and setting the namespaced property to true.

The process for retrieving Datadog credentials is as follows: 1. If a secretRef is defined in the AnalysisTemplate: Argo Rollouts will search for the secret with the specified name in the namespace where the template resides. 2. If the secret is not found in the specified namespace: Argo Rollouts will then check the environment variables. 3. If the credentials are not found in environment variables: Argo Rollouts will look for a secret named "Datadog" in the namespace where Argo Rollouts itself is deployed.


Let me know if there's anything else you'd like to adjust!

```yaml
apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: loq-error-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: error-rate
    interval: 5m
    successCondition: result <= 0.01
    failureLimit: 3
    provider:
      datadog:
        apiVersion: v2
        interval: 5m
        secretRef:
          name: "mysecret"
          namespaced: true
        query: |
          sum:requests.error.rate{service:{{args.service-name}}}
```

Working with Datadog API v2

Important

While some basic v2 functionality is working in earlier versions, the new properties of formula and queries are only available as of v1.7

Moving to v2

If your old v1 was just a simple metric query - no formula as part of the query - then you can just move to v2 by updating the apiVersion in your existing Analysis Template, and everything should work.

If you have a formula, you will need to update how you configure your metric. Here is a before/after example of what your Analysis Template should look like:

Before:

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: log-error-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: error-rate
    interval: 30s
    successCondition: default(result, 0) < 10
    failureLimit: 3
    provider:
      datadog:
        apiVersion: v1
        interval: 5m
        query: "moving_rollup(sum:requests.errors{service:{{args.service-name}}}.as_count(), 60, 'sum') / sum:requests{service:{{args.service-name}}}.as_count()"

After:

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: loq-error-rate
spec:
  args:
  - name: service-name
  metrics:
  - name: error-rate
    # Polling rate against the Datadog API
    interval: 30s
    successCondition: default(result, 0) < 10
    failureLimit: 3
    provider:
      datadog:
        apiVersion: v2
        # The window of time we are looking at in DD. Basically we will fetch data from (now-5m) to now.
        interval: 5m
        queries:
          a: sum:requests.errors{service:{{args.service-name}}}.as_count()
          b: sum:requests{service:{{args.service-name}}}.as_count()
        formula: "moving_rollup(a, 60, 'sum') / b"

Examples

Simple v2 query with no formula

apiVersion: argoproj.io/v1alpha1
kind: AnalysisTemplate
metadata:
  name: canary-container-restarts
spec:
  args:
    # This is set in rollout using the valueFrom: podTemplateHashValue functionality
    - name: canary-hash
    - name: service-name
    - name: restarts.initial-delay
      value: "60s"
    - name: restarts.max-restarts
      value: "4"
  metrics:
    - name: kubernetes.containers.restarts
      initialDelay: "{{ args.restarts.initial-delay }}"
      interval: 15s
      failureCondition: default(result, 0) > {{ args.restarts.max-restarts }}
      failureLimit: 0
      provider:
        datadog:
          apiVersion: v2
          interval: 5m
          queries:
            # The key is arbitrary - you will use this key to refer to the query if you use a formula.
            q: "max:kubernetes.containers.restarts{service-name:{{args.service-name}},rollouts_pod_template_hash:{{args.canary-hash}}}"

Tips

Datadog Results

Datadog queries can return empty results if the query takes place during a time interval with no metrics. The Datadog provider will return a nil value yielding an error during the evaluation phase like:

invalid operation: < (mismatched types <nil> and float64)

However, empty query results yielding a nil value can be handled using the default() function. Here is a succeeding example using the default() function:

successCondition: default(result, 0) < 0.05

Metric aggregation (v2 only)

By default, Datadog analysis run is configured to use last metric aggregator when querying Datadog v2 API. This value can be overriden by specifying a new aggregator value from a list of supported aggregators (avg,min,max,sum,last,percentile,mean,l2norm,area) for the V2 API (docs).

For example, using count-based distribution metric (count:metric{*}.as_count()) with values 1,9,3,7,5 in a given interval will make last aggregator return 5. To return a sum of all values (25), set aggregator: sum in Datadog provider block and use moving_rollup() function to aggregate values in the specified rollup interval. These functions can be combined in a formula to perform additional calculations:

...<snip>
  metrics:
  - name: error-percentage
    interval: 30s
    successCondition: default(result, 0) < 5
    failureLimit: 3
    provider:
      datadog:
        apiVersion: v2
        interval: 5m
        aggregator: sum # override default aggregator
        queries:
          a: count:requests.errors{service:my-service}.as_count()
          b: count:requests{service:my-service}.as_count()
        formula: "moving_rollup(a, 300, 'sum') / moving_rollup(b, 300, 'sum') * 100" # percentage of requests with errors

Templates and Helm

Helm and Argo Rollouts both try to parse things between {{ ... }} when rendering templates. If you use Helm to deliver your manifests, you will need to escape {{ args.whatever }}. Using the example above, here it is set up for Helm:

...<snip>
metrics:
  - name: kubernetes.containers.restarts
      initialDelay: "{{ `{{ args.restarts.initial-delay }}` }}"
    interval: 15s
      failureCondition: default(result, 0) > {{ `{{ args.restarts.max-restarts }}` }}
    failureLimit: 0
    provider:
      datadog:
        apiVersion: v2
        interval: 5m
        queries:
          q: "{{ `max:kubernetes.containers.restarts{kube_app_name:{{args.kube_app_name}},rollouts_pod_template_hash:{{args.canary-hash}}}` }}"

Rate Limits

For the v1 API, you ask for an increase on the api/v1/query route.

For the v2 API, the Ratelimit-Name you ask for an increase in is the query_scalar_public.